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I. Introduction and Description of Regression- - 
Sample Data Technique 

The assumption of linearity is critical for 

the accurate estimation of coefficients in 

linear least squares regression. While observed 
nonlinearities commonly arise because relation- 
ships are truly curved, they can also occur 
when linearly related variables are measured 
with error, and the errors are consistently 
related to the true values. It is also possible 
that a few grossly outlying observations can give 

the appearance of nonlinearity, particularly if 

they are located near the extremes of the dis- 
tribution. As Hogg (1974), in a recent review 

of the issue, quotes Huber, "Just a single 
grossly outlying observation may spoil the least 

squares estimate, and moreover, outliers are 
much harder to spot in the regression than in 

the simple location case." This point is all 

the more relevant when the outliers are the re- 

sult of measurement error. Because the estima- 
tion of curvilinear relationships is difficult, 
and even misleading when measurement error ob- 
scures a truly linear relationship, statisticians 
have advocated other methods which reduce or 
eliminate the impact of nonlinearities and out- 
liers. Three such approaches are (1) the trans- 
formation of data through logarithmic, arc sine, 
or other rules, (2) the elimination of or re- 

duction in the weights assigned to outliers, and 
(3) the use of Stein -James estimators. We have 
used these to attempt to reduce the effects of 
nonlinearities and measurement error in applying 

the regression- sample data method (Ericksen, 

1973, 1974) to estimate postcensal population 
growth. 

The regression -sample data method proceeds 
as follows: 

a. Sample estimates are computed for each 
of the primary sampling units (psus) included 

in an available sample, in this case the Census 
Bureau's Current Population Survey. The de- 
pendent variable is the ratio of the 1970 CPS 

sample estimate for the psu to the recorded 1960 

Census population. 

b. Symptomatic indicators of population 
growth, assumed to be measured without error, 
are compiled, and used as independent variables 
in regression. Examples of these are the 
1970/1960 ratios of births, deaths, and school 

enrollment and alternative estimates of popula- 
tion growth computed by the ratio -correlation 
technique and Census Method II (for discussion 
and references describing these procedures, see 
U.S. Bureau of the Census, 1973). 

c. Regression equations are then computed 

and used to calculate population estimates for 

sample psus and for all counties where sympto- 
matic data are available. 
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In 1970 these regression estimates were 
found to be more accurate than estimates com- 

puted by any other procedure then in use. How- 

ever, they were not as accurate as they would 

have been in the absence of the within -psu 
sampling error. The mean squared error of these 
regression estimates is expressed by the follow- 

ing: 

MSE = (n p + (p 1)ov2 (1) 

n n 

where n = the weighted sum of psus in the sample, 

p = the number of independent variables, 

= the within -psu error, or the mean 

squared error of the sample 

estimates, and 

ßu2 = the residual between -psu error that 
would be obtained from least squares 
regression if there were no within - 

psu error. 

The presence of the within -psu error at least 

partially offsets the gains made by adding 

symptomatic indicators. If sample estimates with 

large errors could be removed or reduced in im- 

portance, the within -psu error would be reduced 

and more efficient use of available symptomatic 
information could be made. 

To illustrate the effect of the within -psu 

error we can refer to Table 1 to compare the re- 

sults obtained when CPS sample estimates were 

used as the dependent variable (Series A) to 

those obtained when 1970/1960 Census ratios were 

used (Series B) and the within -psu error thus 

eliminated. The errors for Series A were 

larger. Furthermore, where gains could be made 

in Series B by adding symptomatic indicators, 

these were largely offset in Series A by increas- 

es in the within -psu error. 

Although not shown in Table 1, there was 

some indication that relationships were not 

linear throughout the distribution. Values at 

the extremes, particularly the positive extreme, 

tended to have larger errors. As an initial 

attempt to rectify this we computed a regression 

equation with all variables in logarithmic form. 

Unfortunately, the result, given as Series C in 

Table 1, was that a slight increase in error was 

obtained. It is possible that a different trans- 

formation would have given better results but 

the difficulty of selecting the best transforma- 

tion in advance is troublesome. Moreover, it 

appears that a small to moderate number of out- 

lying observations is causing most of the diffi- 

culty. A more promising strategy seems to be to 

eliminate or reduce the effects of these outliers. 



2. Dealing with Individual Outliers 

Although Hogg (1974) describes or refers to 

many strategies of dealing with outliers in re- 

gression which have produced good results on 
various sets of data, there does not appear to 
be a set of empirical rules to determine the 
best strategy in advance. In these strategies 
a preliminary estimate of the regression equa- 
tion is computed, and cases where the regression 
estimate and observed value are greatly differ- 
ent are either removed from the sample or 
assigned a lower weight. The trick is to remove 

enough outliers so that errors are reduced 
without removing so many observations that the 
regression equation computed on the basis of re- 

maining observations is biased. For our applied 
problem, the fact that the measurement error was 

large relative to the errors in regression 
lessened this difficulty. 

To be specific, the mean squared error of the 

psu sample estimates, or the within -psu error, 
was found to be = .0243 and the mean squared 

error of various regression estimates ranged 
from .0014 to .0016. Therefore a sample esti- 
mate which deviated grossly from a regression 
estimate was also likely to deviate grossly 
from the corresponding true, but unobserved, 
value. Rules were thus defined which eliminated 
or reduced the weights assigned to observations 
where the preliminary regression estimate was 
very different from the sample estimate. 

The estimated mean squared difference be- 
tween the regression and sample estimates is 

given by the formula: 

Mean Squared Difference = 

(n 1)(ßu2 + 
' 

(2) 

where the terms are defined as in equation (1). 

A preliminary regression equation was computed 
using the ratios of births, deaths, and school 

enrollment as symptomatic indicators and the 

value given by equation (2) was a mean squared 
difference of .0254 with the root mean squared 
difference thus about .16. 

A gross outlier was defined as an observa- 
tion where the difference between the sample 
and regression estimates was over (2)(.16) .32 

and a moderate outlier was an observation where 
this difference was between .16 and .32. 

Assuming normality of the within -psu sampling 
distributions we would have expected about five 

percent of the observations to be gross outliers 
if only random error had been present. In fact, 

as in any survey of human population, there were 
nonrandom sources of error such as differential 

nonresponse, clerical and coding error, records 

which could not be read by the computer and other 

errors in data compilation and processing. Some- 

what more than five percent of the observations 
were gross outliers. 
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Each psu had previously been assigned a 
weight depending on the size of the stratum it 

represented and hence its sample size and pre- 
sumably the accuracy of the sample estimate. 
For some rules, the weight was now set equal to 

zero and the psu was eliminated from the com- 
putation of the regression equation. In other 
cases the weight was divided by two. The 
various rules and results of these rules are 
presented in Tables land 2. In all cases 
regression estimates and errors were computed 
for all sample psus, whether they were included 
in the computation of the regression equation 
or not. For example, three psus, each with a 
weight of 1.0 were eliminated under Rule D and 
the regression equation was computed on the basis 
of the remaining 386 psus. Regression estimates 
were computed for all 389 psus and the accuracy 
of these 389 estimates is reported in Table 1. 

At one extreme (Rule D) only the most grossly 
outlying observations were eliminated, while at 
the other extreme (Rule J) all gross and moderate 
outliers were eliminated. Rules D, E, and G 
eliminated some or all of the gross outliers 
while Rules F and H simply reduced the weights 
assigned to them. Rule I eliminated gross out- 
liers and reduced the weight assigned to moderate 
outliers while Rule J eliminated both gross and 
moderate outliers. Rules D and J were formulated 
as extremes with the expectation that the best 
results would occur somewhere in between. As it 

happened, noticeable improvements were obtained 
for all rules except Rule J where the results 
were no worse than for Series A. The results can 
be summarized as follows: 

a. Referring to Table 1, the best results 

were obtained when the gross outliers were 
eliminated. When the effects of the gross out- 
liers were merely reduced the gains were not as 
great. Similarly, when the effects of the 
moderate outliers were reduced or eliminated, the 
gains were also smaller. Finally, the results 
of all these schemes except Rule J were improve- 
ments over using the raw data in Series A and in 

some cases the mean squared error was reduced by 
15 to 20 percent. 

b. For all except Rule J, clear improvements 
were obtained when four or five symptomatic in- 

dicators were used. Reduction of the within -psu 
error thus makes possible a more efficient use of 
available symptomatic information. 

c. Referring to Table 2, we can see that the 
regression coefficients obtained using Rules D, 
E, and G were very similar to those obtained in 

Series B when no within -psu error was present. 

Similarly, the level of error was about the same 

in Series B, D, E, and G. 

The regression -sample data estimates were 

thus improved by the elimination of gross out- 

liers. We cannot give a procedure for selecting 
one best rule, but clear gains can be obtained 
from any one of several sensible appearing rules. 



If the distributions of the sample means for in- 

dividual psus are approximately normal, one 
would expect about five percent of the observa- 
tions to be greater than twice the square root 
of the estimated within -psu variance. This in 

turn is only slightly less than the root mean 
squared difference between the regression and 
sample estimates. It therefore seems reasonable 
to formulate a rule based on the elimination of 
gross outliers as defined in this illustration. 

In cases where the measurement errors are not as 
large relative to the errors of regression a 
different rule might be more appropriate. 

3. Using Stein -James Estimates 

Our third approach was to compute Stein -James 
estimates of the sample psu observations and then 
to use these estimates as the dependent variable 
in regression. Lindley (1962), adding to the 
basic result of James and Stein (1961) showed 

that where one wished to estimate the parameters 
el, 02,...,0k where each is the mean of an 
independent normal variate Xi, where Xi was dis- 
tributed with mean and a common variance 

av2, for k > 4, the estimator 

di = + - (k-3)av2](Xi 

k 
S' 

(3) 

where 5' - 

i =1 

is uniformly better than the maximum likelihood 
estimator; which in our case is the set of sam- 

ple means for the sample psus. Other descrip- 

tions and references explaining the method and 
its uses are given by Efron and Morris (1973, 

1975). Where lie close together and av2 is 

large, significant gains in accuracy have been 
obtained (e.g., Efron and Morris, 1975). Trans- 
lating the symbols into the terminology used in 

this paper, the represents the 1970/1960 
Census ratios of population growth, the X¡ 
represent the CPS sample estimates, 

av2 repre- 
sents the within -psu error, as in equation (1), 

and k represents the number of primary sampling 
units. We found that we were able to obtain 
significant increases in the accuracy of the 
sample estimates using the Stein -James estimator. 

Unfortunately these were not translatable into 

improvements in the regression estimates. 

In order to apply the Stein -James estimator, 
certain conditions are necessary. These are: 

a. Each X¡ is normally distributed. Given 

the within -psu sample sizes available, this was 

approximately true. 

b. The value of av2 is the same for all Xi. 

This condition was met by restricting our atten- 

tion only to 297 psus where the sample size, and 
hence the expected value of av2, were about the 

same. 
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c. The values of the Ai had to be close. 

This was accomplished by grouping observations 

using the preliminary regression estimate based 

on births, deaths, and school enrollment used to 

spot outliers in the preceding discussion. Be- 

cause the distribution of was positively 
skewed, more subgroups were needed at the top of 

the distribution. 

The question of how many subgroups to use is 

critical. We tried successively subdividing the 

sample into 1, 2, 4, 10 & 27 subgroups of nearly 

equal size. As can be seen from equation (3), 

the Stein -James estimator has the effect of 

pulling values into the subgroup mean. Where 
most of the variation in a subgroup is sampling 
error, this has the effect of reducing or elim- 
inating the within -psu error. Where the vari- 
ance in actual values is larger, this pulls in 

the actual values as well, thus biasing the 
estimate toward the subgroup mean. For example, 
when only one subgroup was used, the variance 
of the distribution of Stein -James estimates 
was smaller than either the variance of the 
distribution of sample estimates or the distri- 
bution of actual 1970/1960 Census ratios. This 
is because the Stein -James estimates at the 
top end of the distribution were consistently 
lower than either the Census recorded values or 
the CPS sample estimates and the opposite was 
true at the bottom end of the distribution. The 
Stein -James estimates in the middle of the dis- 
tribution tended not to have a consistent error 
in direction and, as shown in Table 3, were 
considerably more accurate than the CPS sample 
estimates. On the other hand, when the number 
of subgroups used was increased, the Stein -James 
estimates for the extreme groups, particularly 
at the top end of the distribution, became more 
accurate. Unfortunately, when the number of 
subgroups was large the errors of Stein -James 
estimates for psus in the middle range increased. 
This is presumably due to the effects of errors 
in the preliminary regression estimates. As 
shown below, the most efficient overall results 
were obtained by splitting the sample into 
four or ten subgroups. 

Estimator 

1 Sub- 

Mean Squared 

Error 

Percent Reduc- 

tion in Error 

Original Sample 

Estimates 
Stein- James, 
group 

.0343 

.0136 60.3 

Stein -James, 
groups 

2 Sub- .0096 72.0 

Stein -James, 

groups 

4 Sub- .0077 77.6 

Stein -James, 
groups 

10 Sub- .0078 77.3 

Stein -James, 
groups 

27 Sub- .0101 70.6 

As shown in Table 3, only the errors of the top 

decile of psus were minimized by sorting into 

27 subgroups. In all other deciles, the mean 



squared error was minimized by sorting the sam- 
ple into four or ten subgroups. Clearly, the 
best results in regression could be obtained by 
using as the dependent variable the Stein -James 
estimates based on 27 subgroups for the top 
decile and the Stein -James estimates based on 4 
or 10 groups for all remaining observations. 

The seven distributions of Stein-James esti- 
mates indicated in Table 3 were finally used as 
dependent variables in regression with four or 
five symptomatic indicators. The accuracy of 
these regression estimates is indicated in 

Table 4. We can see that little or no gain was 

obtained except for distribution 27 -04, i.e., 

where the Stein -James estimates based on 27 sub- 
groups were used for the top decile and the 
Stein -James estimates based on 4 subgroups were 
used for all other psus. This particular dis- 
tribution of Stein -James estimates was selected 
using the information on their accuracy obtain- 
ed by comparison with Census data. It is 

doubtful if such an appropriate selection could 
be made in practice. It appears that if Stein - 
James estimates, while they clearly improve the 
accuracy of the sample estimates, are to be 
useful in regression analysis, an efficient 
algorithm for grouping observations will have 
to be developed. Otherwise, the procedure is 

too complicated to use for such moderate gains. 

To summarize, the best results were obtained 
by first using a preliminary set of regression 

estimates to spot individual outliers and then 
eliminating or reducing the weights assigned 
to these outliers. This made possible the sub- 
sequent calculation of more accurate regression 
equations. We have not solved the problem of 
identifying the best rule for spotting and re- 

ducing the impact of these outliers. We have 

shown, however, that where the measurement error 
of the observations is large relative to the 
errors in regression, there is a large class of 
rules which lessen the effects of outliers and 
lead to more accurate estimation of regression 
equations. For our regression -sample data esti- 
mates, using these rules sharply reduced the 
within -psu component of the mean squared error 
and gains of up to 20 percent in the overall 

mean squared error were obtained. In fact, 

the results were nearly as good as if the with- 
in psu component of error had been removed com- 
pletely. There are two important next steps. 
The first is to see whether similar gains could 
be obtained for other variables and /or other 
time periods. The second is to devise an 
estimator for the mean squared error when out- 
liers are removed or reduced in weight. 
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Table 1: Errors Obtained by Various Regression Equations for Estimates of 
Population Growth in 1960 -70 for 389 Primary Sampling Units 

Number of Symptomatic Indicators= 

Series' 
(Sum of Weights) 

A 
(647) 

B 

(647) 

C 

(647) 

D 

(644) 

E 

(636) 

F 

(633) 

G 
(619) 

H 

(584) 

(570) 

(521) 

2 

Mean 
Absolute 
Percent 
Error 

2.81 

2.76 

3.25 

2.77 

2.75 

2.75 

2.76 

2.82 

2.81 

2.97 

Mean 
Squared 
Error 
(x 10 -4) 

14.00 

14.27 

17.14 

13.94 

13.83 

13.75 

14.00 

14.12 

14.37 

15.45 

3 

Mean 
Absolute 
Percent 
Error 

2.97 

2.71 

3.34 

2.72 

2.69 

2:82 

2.73 

2.88 

2.78 

2.91 

Mean 
Squared 
Error 
(x 10 -4) 

15.59 

13.64 

17.99 

13.50 

13.26 

14.39 

13.78 

14.66 

14.05 

15.04 

4 

Mean 
Absolute 
Percent 
Error 

2.91 

2.59 

3.31 

2.63 

2.58 

2.73 

2.61 

2.80 

2.66 

2.79 

Mean 
Squared 
Error 
(x 10 -4) 

14.68 

12.30 

17.47 

12.25 

12.06 

13.28 

12.51 

13.68 

12.81 

13.93 

5 

Mean 

Absolute 
Percent 
Error 

2.89 

2.54 

3.35 

2.62 

2.53 

2.69 

2.56 

2.81 

2.63 

2.87 

Mean 
Squared 
Error 
(x 10 -4) 

14.44 

11.80 

17.89 

12.11 

11.51 

12.87 

12.04 

13.85 

12.58 

14.75 

Definitions of series. Dependent variable is: 

A: original sample estimates obtained from CPS. 

B: Census recorded values. 

C: Logarithms of CPS estimates (all other variables in logarithmic form). 

D: Set Z - (Y0 - Y) /Y where Yo - the CPS sample estimate and Y the preliminary regression 

estimate. Eliminate if Z > .64. 

E: Eliminate if Z > .48. 

F: Divide weight in half if Z > .32. 

G. Eliminate if Z > .32. 

H. Divide weight in half If Z > .16. 

I. Eliminate if Z > .32 and divide weight in half if .16 < Z < .32. 

J. Eliminate if Z > .16. 

2 Independent variables used for: 

2 Symptomatic indicators, school enrollment and ratio -correlation estimate. 

3 Symptomatic indicators, births, school enrollment and ratio -correlation' estimate. 

4 Symptomatic indicators, births, deaths, school enrollment, and ratio -correlation estimate. 

5 Symptomatic indicators, births, deaths, school enrollment, ratio -correlation estimate, and 

method II estimate. 

Table 2: R..aression Coefficients Obtained for Four Variable Equations 

Coefficient of 

Series1 Constant Births Deaths Enrollment Ratio- Correlation Determination, R: 

A .058 -.097 +.045 +.214 +.745 .428 

B .004 +.094 +.11l +.229 +.573 .951 

C -.035 -.050 +.024 +.294 +.665 .404 

D .049 +.062 +.085 +.218 +.588 .439 

E .038 +.088 +.072 +.242 +.570 .491 

F .049 -.040 +.059 +.256 +.657 .482 

G .039 +.029 +.076 +.299 +.556 .552 

H .047 -.036 -.046 +.276 +.646 .534 

I .036 +.039 +.064 +.325 +.534 .632 

J .033 +.055 +.050 +.364 +.496 .770 

Sea Table 1 for definitions. 
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Table 3: Mean Squared Errors of Stein -James Estimates Using Various 
Grouping Strategies 

Original Number of Grou.s' 
CPS Sample Size of 

Decile Estimates 1 . 2 4 10 27 27 -04 27 -10 Group 

1 .0510 .0349 .0259 .0216 .0190 .0145 .0145 .0145 30 

2 .0393 .0130 .0073 .0085 .0069 .0105 .0085 .0069 30 

3 .0247 .0113 .0063 .0059 .0038 .0057 .0059 .0038 30 

4 .0265 .0074 .0071 .0032 .0043 .0052 .0032 .0043 30 

5 .0399 .0118 .0071 .0029 .0058 .0103 .0029 .0058 30 

6 .0492 .0133 .0126 .0095 .0127 .0175 .0095 .0127 30 

7 .0459 .0124 .0125 .0089 .0088 .0136 .0089 .0088 30 

8 .0259 .0086 .0059 .0068 .0061 .0107 .0068 .0061 29 

9 .0183 .0088 .0042 .0044 .0046 .0051 .0044 .0046 29 

10 .0206 .0140 .0064 .0047 .0057 .0074 .0047 .0057 29 

Total .0343 .0136 .0096 .0077 .0078 .0101 .0070 .0073 

This refers to the number of groups the psus were divided into before the Stein -James 
estimates were computed. Where the number of groups is given as 27 -04, the top 30 
observations were grouped as they were in the subdivision into 27 subgroups while 
remaining observations were given the values assigned when four subgroups were created. 
Similarly, where the number is given as 27 -10, the top 30 were assigned the values 
obtained when there were 27 subgroups while remaining observations were assigned the 
values given when there were ten subgroups. The subgroups were defined on the basis 
of a preliminary set of regression estimates. 

Table 4: Errors of Regression Estimates When Stein -James Estimates 
Are Used as Dependent Variable for 297 Psus 

Number of 
Symptomatic 
Indicators2 

Definition of Dependent Variable' 

Stein -James Estimates Original 1970/1960 

CPS Sample Census 
1 2 4 10 27 27 -04 27-10 Estimates Ratios 

Four Mean Absolute 
Percent Error 5.83 4.46 4.04 3.96 3.80 3.54 3.87 3.85 2.79 

Mean Squared 

Error x 10-4 54.35 31.55 24.95 23.14 21.33 19.25 22.16 22.26 13.96 

Five Mean Absolute 
Percent Error 5.89 4.46 4.03 3.94 3.78 3.52 3.84 3.83 2.77 

Mean Squared 
Error x 54.52 30.11 22.71 20.23 20.53 18.63 21.55 21.83 13.35 

Definitions of the Dependent Variables are the same as in Table 3. 

The symptomatic indicators used to compute the regression equations are the same 
as indicated in Table 1. 
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